0%

CF1986F Non-academic Problem

传送门

Description

一张连通无向图,你可以剪断任意一条边。求剪断后存在路径的点对数的最小值。

Solution

Tarjan 求出无向图中所有的桥,并在 Tarjan 过程中记录下每个点 uu 在 dfs 树中的子树规模 sizusiz_u。若剪断桥 (u,v)(u,v)(不妨设 dfnu<dfnvdfn_u<dfn_v),设

x=sizv,y=nxx = siz_v,y=n-x

则答案为

x(x1)2+y(y1)2\dfrac{x(x-1)}{2}+\dfrac{y(y-1)}{2}

枚举每一条桥,取结果最小值即可。

时间复杂度 Θ(n+m)\Theta(n+m)

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N = 1e5 + 10;

ll T, n, m, head[N], edge_cnt, fa[N], low[N], dfn[N], tar_cnt, isbri[N], siz[N], ans;
struct edge {
ll nxt, v;
} e[N << 1];

void add_edge(ll u, ll v)
{
e[++edge_cnt].nxt = head[u];
head[u] = edge_cnt;
e[edge_cnt].v = v;
}

void Tarjan(ll u, ll pre)
{
fa[u] = pre;
siz[u] = 1;
low[u] = dfn[u] = ++tar_cnt;
for (int i = head[u]; i; i = e[i].nxt) {
ll v = e[i].v;
if (!dfn[v]) {
Tarjan(v, u);
siz[u] += siz[v];
low[u] = min(low[u], low[v]);
if (low[v] > dfn[u])
isbri[v] = 1;
} else if (dfn[v] < dfn[u] && v != pre)
low[u] = min(low[u], dfn[v]);
}
}

void WORK()
{
scanf("%lld%lld", &n, &m);
memset(dfn, 0, sizeof(ll) * (n + 10));
memset(low, 0, sizeof(ll) * (n + 10));
tar_cnt = edge_cnt = 0;
memset(fa, 0, sizeof(ll) * (n + 10));
memset(isbri, 0, sizeof(ll) * (n + 10));
memset(siz, 0, sizeof(ll) * (n + 10));
memset(head, 0, sizeof(ll) * (n + 10));
for (int i = 1; i <= m; i++) {
ll u, v;
scanf("%lld%lld", &u, &v);
add_edge(u, v);
add_edge(v, u);
}
Tarjan(1, 0);
ans = n;
for (int i = 1; i <= n; i++)
if (isbri[i])
ans = min(ans, max(siz[i], n - siz[i]));
printf("%lld\n", ans * (ans - 1) / 2 + (n - ans) * (n - ans - 1) / 2);
}

int main()
{
scanf("%lld", &T);
while (T--) WORK();
return 0;
}